Simulation, design and experimental validation of a passive magnetic damper for ultra-fast actuators
نویسندگان
چکیده
A contact system driven by a high energetic Thomson actuator requires to be decelerated from full speed down to zero. The forces originated from the interaction between a stationary copper tube and a moving array of magnets combined with plastic or ferromagnetic material are used to generate eddy-current damping. Five different configurations of small but strong (N52) neodymium magnets and spacers were benchmarked for simple free-fall damping. A comparison between experimental results and simulations (using COMSOL) has shown that the most effective damping is reached by two consecutive permanent magnets with opposite magnetization directions ,separated by low-carbon content steel concentrators(SN-Fe concentrator-NS). The proposed damper design is the result of the balance between various parameters such as magnet orientation topology in the array, spacer material and its dimensions, copper tube thickness and the air gap between copper tube and array. Furthermore, the design was scaled up and an actuator-drive system was added to perform more realistic tests, which demonstrated the damping effectiveness on a fast moving armature actuated by a Thomson coil energized by a capacitor bank. All models in the simulation predicted the damping effect in advance. Investigations were conducted with two cases: (1) A solid copper rod was supposed to pass through the magnet array; (2) A plastic shaft was applied to support the magnet array. Finally a damping prototype with a plastic shaft was built for completing damping tests. The results of these tests validated the numerical model with a high degree of accuracy.
منابع مشابه
Hybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine
In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...
متن کاملPassive Controller Design for Swing Phase of a Single Axis Above-Knee Prosthesis
In this research we design a passive controller for an above knee prosthesis. The controller is a linear spring and damper for swing phase motion, parameters of which determined via optimization of adjustment of the prosthesis shank motion with a desired shank angle trajectory comes from experimental data. In this way, we exerted a certain thigh motion, hip movement included, into the system as...
متن کاملDesign and Construction of an Electromagetic Supension System for Vehicles
This paper introduces a novel passive suspension system for ground vehicles. This system is based on a flexible Electromagnetic Shock Absorber (EMSA). In the proposed system, efforts are made to a) select a high damping coefficient usable in a car b) determine Physical dimensions and geometry not much different from those of the mechanical shock absorbers and c) seletct EMSA weight and volume l...
متن کاملDesign and Construction of an Electromagetic Supension System for Vehicles
This paper introduces a novel passive suspension system for ground vehicles. This system is based on a flexible Electromagnetic Shock Absorber (EMSA). In the proposed system, efforts are made to a) select a high damping coefficient usable in a car b) determine Physical dimensions and geometry not much different from those of the mechanical shock absorbers and c) seletct EMSA weight and volume l...
متن کاملPerformance Evaluation of Magnetorheological Damper Valve Configurations Using Finite Element Method
The main purpose of this paper is to study various configurations of a magnetorheological (MR) damper valve and to evaluate their performance indices typically dynamic range, valve ratio, inductive time constant and pressure drop. It is known that these performance indices (PI) of the damper depend upon the magnetic circuit design of the valve. Hence, nine valve configurations are considered fo...
متن کامل